

Typical Features

- ♦ Wide input voltage range 3:1
- High efficiency up to 91%
- ◆Low no-load power consumption
- ◆Operating Temperature: -40°C to +105°C
- ◆ High isolation voltage, input-output 2500VAC, input-case 2100VAC
- Protection: Input under/over voltage, output over voltage, over current, over temp, short circuit
- Standard brick size

Conform to CE standard

ZAA700-220S24 high efficiency brick ac-dc converter, rated input voltage 220VAC, output 24V/700W, no minimum load, wide input 90-286VAC,regulated single output, high isolation insulation voltage, allowing operating temperature up to 105 °C, with input under/over voltage protection, output over-current, over-voltage, over-temperature, short-circuit protection and remote compensation, output voltage regulation and other functions.

Typical Product L	.ist						
Part no	Input voltage range (VAC)	Output power (W)	Output voltage (VDC)	Output current (A)	Ripple & Noise (mV)	Full load efficiency(%) Min/Typ.	Note
ZAA700-220S24	00.206	700	24	20	240	00.400	Standard
ZAA700-220S24-H	90-286	700	24	29	240	88/90	With heat-sink

Note: When the input is 154VAC and below 200VDC, the output load capacity is linearly derated. When input is 90VAC/140VDC, the stable output power is 500W.

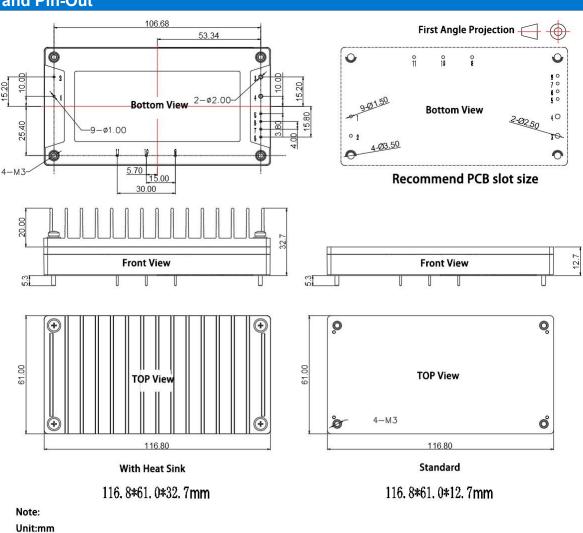
Item	Operating conditions	Min.	Тур.	Max.	Unit	
AC input starting working voltage				90		
Ac input under voltage protection				80	\	
Ac input over voltage protection		290		310	VAC	
Input impulse voltage (1sec.max.)	Input beyond this range may cause permanent damage	-0.7		315		
Dc input starting working voltage				145		
Dc input under voltage protection				135	VDC	
Dc input over voltage protection		425		435		
Input maximum impulse current	Input line in series 5.6R, 20mm diameter thermal sensitive, 220Vac input			40	А	
Input voltage frequency		47		63	Hz	
Start-up time				5	S	
Standby power consumption	220Vac input		10	20	W	
PF value	220Vac input, full load output	95			%	

Output Specification					
Item	Operating conditions	Min.	Тур.	Max.	Unit
Output voltage accuracy	Nominal input voltage, 0%-100% load		±0.2	±1.0	
Linear regulation rate	Full load, input voltage from low to high		±0.1	±0.2	%
Load regulation rate	Nominal input voltage, 10%-100% load		±0.1	±0.2	
Transient recovery time	050/		200	250	uS
Transient response deviation	25% load step change (step rate 1A/50uS)	-5		5	%
Temperature drift coefficient	Full load	-0.02		+0.02	%/℃
Ripple & Noise	20M bandwidth, external capacitance test above 1000uF		150	240	mVp-p
Output voltage adjustment (TRIM)		21.6		26.4	VDC
Output voltage remote compensation (Sense)				105	%
Over temp protection	Maximum temperature of product metal substrate surface	105	115	125	$^{\circ}$ C
Output over voltage protection		125		150	%
Output over current protection		30.5		37.7	А
Output short circuit protection		H	Hiccup, conti	nuous, self-re	covery

General Specification							
Item	Operating co	Operating conditions			Max.	Unit	
	I/P-O/P	Test 1min, leakage current < 3mA			2500	VAC	
Isolation Voltage	I/P-Case	Test 1min, leakage current < 3mA			2100	VAC	
	O/P-Case	Test 1min, leakage current < 3mA			500	VAC	
Insulation resistance	I/P-O/P	Insulation voltage 500VDC	100			ΜΩ	
MTBF			150			K hours	

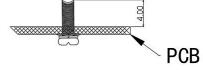
Environmental characteristics						
Item	Operating conditions	Min.	Тур.	Max.	Unit	
Operating Temperature	See temperature derating curve	-40		+105	$^{\circ}$	
Storage Humidity	No condensing	5		95	%RH	
Storage Temperature		-40		+125		
Soldering resistance of pins	The solder joint is 1.5mm away from the shell, and the soldering time< 1.5S			+350	${\mathbb C}$	
Cooling requirements		EN60068-2-1				
Dry heat requirement		EN60068-2-2				
Damp heat requirement		EN60068-2-30				
Shock and vibration		IEC/EN 61373 Body 1 Class B				

EMC Characteristics(EN55032)							
	CE	EN55032-3-2	150kHz-500kHz 66dBuV				
EMI	CE	EN55032-2-1	500kHz-30MHz 60dBuV				
□IVII	RE	DE	EN55032-3-2	30MHz-230MHz 50dBuV/m at 3m			
		EN55032-2-1	230MHz-1GHz 57dBuV/m at 3m				
EMS	ESD	EN55032-3-2	Contact ±6KV/Air ±8KV	perf. Criteria A			
EIVIO	RS	EN55032-3-2	10V/m	perf. Criteria A			



Physical Characteristics				
Case Materials	Metal bottom shell + black flame retardant material shell (UL94 V-0)			
Heat sink	Dimension 116.8*61*20mm, weight 150g, aluminum alloy, anodized black			
Cooling method H	Conduction cooling or forced air cooling			
Product Weight	Standard 250g, with heat sink 402g			

Dimension and Pin-Out



Pin 1, 2, 5, 6, 7, 8, 9, 10, 11 dia:1.00

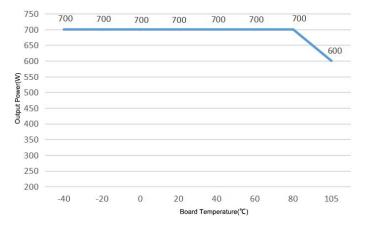
Pin 3, 4 dia:2.00

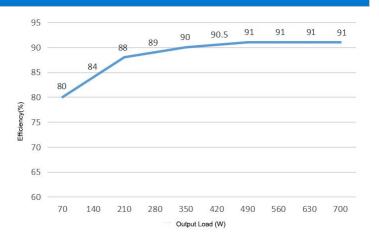
General tolerance: ± 0.10

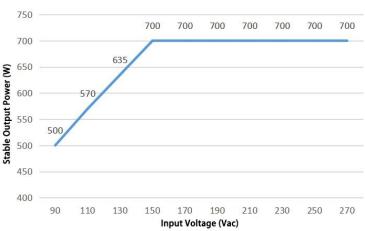
Mounting hole tightening torque: Max 0.4N*m

No	1	2	3	4	5	6
Pin-out	AC(L)	AC(N)	-Vo	+Vo	-S	+S
No	7	8	9	10	11	
Pin-out	TRIM	ENA	-BC	+BC	R	

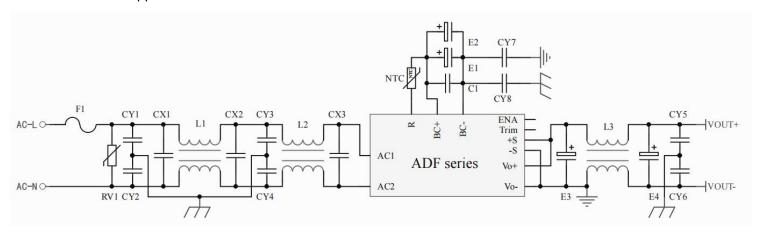
Note: 1. ENA is the output status signal, and when the power supply is working normally, ENA shows low impedance; When the power supply operates abnormally, ENA exhibits high impedance and the maximum pulling current is 10mA;







Product characteristic curve



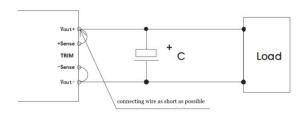
Notes

- 1. The temperature derating curve and efficiency curve are both typical values tested;
- 2. The temperature derating curve is tested according to our laboratory testing conditions. If the actual environmental conditions used by the customer are inconsister necessary to ensure that the temperature of the aluminum shell of the product does not exceed 105 °C and can be used within any rated load range.

Reference

1. Recommended application circuit.

F1	AC250V 10A fuse
RV1	14D 620V varistor
CX1,CX2,CX3	250Vac 1uF X2 capacitor
CY1,CY2,CY3,CY4,CY8	1000pF 250VAC Y2 capacitor

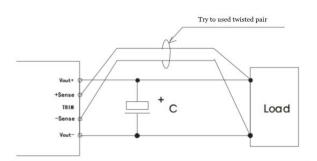

CY7	470pF 250VAC Y1 capacitor
L1,L2	6.0mH common mode inductor, rated current not less than 7.5A
E1,E2	450V 330uF electrolytic capacitor
C1	1 uF 630V polypropylene capacitor
NTC	5.6 Ω 20mm thermistor
E3, E4	1000uF 35V electrolytic capacitor
CY5,CY6	10nF 2KV ceramic chip capacitor
L3	5.0uH common mode inductor, rated current not less than 29A

Note: There are limited requirements for the selection of capacitors CX3, C1, E1, and E2 in the recommended circuits above; CX3 and C1 must ≥ 1 uF capacitance; The capacity after E1 and E2 are connected in parallel must ≥ 440 uF; the NTC resistor must be installed; if this restriction is not followed, the power supply may be damaged.

2. Sense usage and precautions

(1) Without far-end

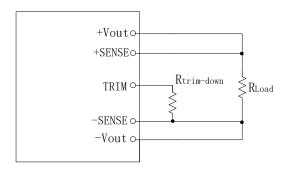
compensation:

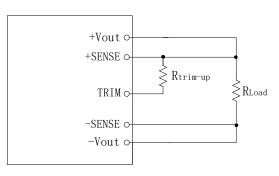


Precautions:

- 1. Do not use remote compensation, make sure Vout+ and Sense+, Vout- and Sense- are short-circuited;
- 2. The connection between Vout+ and Sense+, Vout- and Sense- should be as short as possible and close to the pins, otherwise the module may become unstable.

(2) Using remote


compensation



Precautions:

- 1. When the long-end compensation lead is used, the output voltage may be unstable;
- 2. If remote compensation is used, please use twisted pair or shielded wire, and keep the lead wire as short as possible;
- 3. Please use wide PCB leads or thick wires between the power module and the load, and keep the line voltage drop below 0.3V to ensure that the power output voltage remains within the specified range;
 - 4. The impedance of the leads may cause the output voltage to oscillate or have larger ripples. Please verify it before use.

3. Use of TRIM and calculation of TRIM resistance

The external resistance is applied between the TRIM terminal and the ± SENSE terminal, which can increase or decrease the output voltage within the range of 66.6% -107% Vout. When a resistor is applied between the TRIM terminal and the+SENSE terminal, the output voltage increases; The resistor

is applied between the TRIM and - SENSE terminals, resulting in a decrease in output voltage. During adjustment, adjust the resistance as close as possible to the lead of the module power supply. When this function is not needed, the TRIM end is suspended.

Rtrim-up=(5.1*Δ*Vo-12.75)/(2.5*Δ-2.5)-10.2 (KΩ) Rtrim-down=(10.2*Δ-5.1)/(1-Δ) (KΩ)

For example, it is necessary to increase the output voltage to 26.4V, Vo=24V; Δ = 26.4/26=1.1. Bring in formula Rtrim up=(5.1 * 1.1 * 24-12.75)/(2.5 * 1.1-2.5) -10.2=477.36 It is necessary to lower the output voltage to 21.6V, Δ = 21.6/24=0.9. Bring in formula Rtrim down=(10.2 * 0.9-5.1)/(1-0.9)=40.8

Others

- 1 The warranty period of this product is two years. During the normal damage, it will be repaired free of charge. Damages caused by errors in the use method or manufacturing technology, a paid service is provided.
- 2. Our company can provide product customization and matching filter modules. For details, please contact our technical staff directly.